Conception and Evolution of Stereocontrolled Strategies toward Functionalized 8-Aryloctanoic Acids Related to the Total Synthesis of Aliskiren

Stephen Hanessian,* Etienne Chénard, Sébastien Guesné, and Jean-Philippe Cusson

Department of Chemistry, Université de Montréal, CP6128 Succursale A, Centre-ville, Montréal, Quebec H3C 3J7, Canada

Supporting Information

ABSTRACT: A detailed account is given describing the approaches used toward the total synthesis of aliskiren. In particular, ring-closing metathesis with the Hoveyda–Grubbs catalyst accelerates the formation of a 9-membered lactone from an (R)-ester. The diastereomeric (S)-ester leads to the formation of dimeric dilactones, which were characterized by X-ray analysis and chemical conversions.

INTRODUCTION

The regulation of arterial blood pressure is a complex physiological process with important implications in the pathogenesis of cardiovascular diseases.¹ Among these, hypertension is considered to be a high risk factor and associated with incidences of stroke and kidney failure. A natural substance produced by the kidney, named renin, was known to have a hypertensive effect in experimental animals as far back as 1898.² Since then, pioneering efforts in cardiovascular medicine have advanced the frontiers of antihypertensive research, culminating with the availability of drugs to control the disease.³ The aspartyl protease renin is part of the renin angiotensin system (RAS), known to be a regulator of blood pressure and electrolyte balance.⁴ Stimulation of the RAS leads to the release of renin from the kidney, whereupon a series of proteolytic events take place ultimately forming vasoconstricting peptides.⁵ Thus, renin cleaves a Leu-Val peptide linkage in its endogenous substrate angiotensinogen, releasing the decapeptide angiotensin I (Figure 1A). A second enzyme in the RAS, angiotensin-converting enzyme (ACE), then cleaves two amino acids from angiotensin I to give the vasoconstricting octapeptide angiotensin II. On the basis of these observations, the inhibition of renin as the first and rate-limiting step in the RAS cycle was considered to be a viable and attractive strategy in the quest toward discovery of novel antihypertensives working by a unique mechanism.⁶ Indeed, major advances toward this goal have been made during the past three decades.⁷ Unfortunately, and in spite of achieving highly effective in vivo inhibition of renin with beneficial antihypertensive action, such activities had to be terminated in a number of pharmaceutical companies primarily due to issues dealing with cost of production and bioavailability. Nevertheless, the synthesis of minimally peptidic potent inhibitors, such as CGP-38960 (Figure 1B), was admirably guided by structure-based design relying on valuable information gleaned from cocrystal structures

Figure 1. (A) Scissile Leu-Val bond in angiotensinogen by the enzyme renin. (B) First-generation peptidic inhibitor. (C) Structure of aliskiren.

with human recombinant renin.⁸ Although active investigations toward the synthesis of new renin inhibitors had somewhat waned, a new class of nonpeptidic 8-aryloctanoic acid amides was

 Received:
 July 11, 2014

 Published:
 October 6, 2014

Article

Figure 2. Early prototypes of renin inhibitors: (A) L-mandelic acid as starting chiron; (B and C) L-pyroglutamic acid as starting chiron and source of nitrogen (Dieckmann and phosphate extension routes).

found to have highly promising activity.9 Further refinement in this series by scientists at Ciba-Geigy (Pharma) in Basel led to aliskiren (1), which is presently marketed by Novartis for the treatment of hypertension under the trade name Tekturna (Figure 1C).¹⁰ The cocrystal structure analysis of aliskiren in complex with renin revealed the characteristic interactions of the hydroxyethylene segment with aspartic acid residue and unique binding interactions of the hydrophobic moieties.¹¹ Of particular significance in optimizing the inhibitory activity was the truncation of segments corresponding to the P2 and P4 site in the original inhibitors such as CGP-38560 by directly linking P_1 and P_3 (Figure 1). Compared to the previous generation of renin inhibitors, often possessing heterocyclic appendages near the hydroxyethylene subunit,¹⁰ aliskiren represents a structurally simple ω -aryloctanoic acid amide harboring four stereogenic carbon atoms (Figure 1). Further SAR studies also demonstrated an improvement of the affinity at the P_2' site when the n-butylamide was exchanged for a 3-amino-2,2-dimethylpropionamide unit.¹² Already, considerable interest has been generated in the clinical aspects of aliskiren, a first-in-class, orally active antihypertensive.¹³

BACKGROUND

Among the many research collaborations with pharmaceutical companies, none are more challenging than when an academic is asked to contribute to an active project with the prospects of developing a viable synthesis of a molecule of interest.¹⁴ Encouraged by such an opportunity, we first explored a stereocontrolled approach to a bioactive prototype of aliskiren, starting with L-mandelic acid (Figure 2A).¹⁵ In the following years, we were motivated to devise strategies avoiding the use of azide as a source of the C-5 nitrogen atom (aliskiren numbering) for safety considerations in an eventual scale-up operation. Further consideration to our mandate was to avoid the use of chiral auxiliaries to create stereogenic carbon atoms with required substituents for cost and possibly IP reasons. Faced with these restrictions, we devised two stereocontrolled approaches to 2,7-dialkyl-4-hydroxy-5-amino-8-aryloctanoic acids exemplified by 3, starting with the readily available L-pyroglutamic acid as a chiron¹⁶ (Figure 2B and 2C). In addition to providing the source of the nitrogen atom, the inherent stereochemistry in the starting chiron served to control the sequential stereocontrolled introduction of appropriate functionality.

Since our initial efforts toward the stereocontrolled synthesis of aliskiren, 15,16 there has been a plethora of reports particularly in the patent literature¹⁷ describing a variety of approaches to intermediates and analogues. In a brief overview, we shall distinguish those involving approaches¹⁸ or formal syntheses¹⁹ from those pertaining to actual total syntheses²⁰ of aliskiren.²¹ In the majority of these syntheses, extensive use was made of the Evans²² and Schöllkopf²³ chiral auxiliaries to secure the C-2/C-7 isopropyl and C-4/C-5 amino alcohol groups, respectively, in high enantio- or diastereoselectivity. Alternative approaches are described in several patents.^{17,24} For example, the key building blocks used in the Speedel process²⁵ for the synthesis of aliskiren are shown in Figure 3. Intermediate **A** was obtained by an

Figure 3. Key building blocks in the Speedel process toward aliskiren.

asymmetric catalytic hydrogenation of an α_{β} -unsaturated precursor in >95% ee starting from a racemic dialkoxyphenyl propionate precursor (total of seven steps). The enantiopure chlorovinyl intermediate B was prepared from the racemic ester via pig liver esterase resolution in 47% yield, after distillation. The undesired enantiomeric carboxylic acid was recycled by epimerization, esterification, and repeated enzyme treatment (total three steps to B from methyl isobutyrate in one pass). Intermediate C was prepared from acid A in three steps. Coupling of C and B was accomplished via the corresponding Grignard reagent derived from B in the presence of Fe^{III} acetylacetonate to give D in 75% yield. Subsequent steps involving hydrolysis to the acid, bromolactonization, epoxide formation, lactonization, mesylation, and azide displacement gave the azidolactone precursor E. Condensation with 3-amino-2,2-dimethylpropionamide, followed by hydrogenation and crystallization, gave aliskiren fumarate (total of 10 steps from **D**). Improvements in the bromolactonization step have also been reported.24

In the past, chiral auxiliaries were used to access intermediates such as C and D (Figure 3).^{18-20,22} In spite of this invaluable method, all of the reported syntheses comprise numerous steps to access the building blocks individually and prior to engaging them in a stepwise assembly. Furthermore, except for some of the patented processes, none of the published papers provide experimental details leading to aliskiren.

Recently, we reported on an efficient synthesis of intermediate 4 adopting an extension of the Stoltz²⁶ catalytic asymmetric transposition of an allylic enolcarbonate derived from the corresponding aryl ketone precursor followed by reduction at the

benzylic carbon (Scheme 1).²⁷ A cross-metathesis reaction with ester **5** led to the advanced Speedel intermediate **6** in five linear steps and 38% overall yield from 4-methoxy-3-(methoxypropoxy)-1-bromobenzene.

Nine-Membered Lactone Route toward Aliskiren. As is clear from the preceding section, a major challenge in devising synthetic approaches to aliskiren is the introduction of the C-2/C-7 isopropyl groups and the C-4/C-5 amino alcohol subunit in the 8-aryloctanoic acid framework with high stereocontrol (Figure 1C). Added to this is the desire to devise a relatively shorter route compared to existing reports, including those in the patent literature. We recently reported an 11-step total synthesis of aliskiren starting with a single chiral progenitor (Figure 4).²⁸

Figure 4. Nine-membered lactone route to aliskiren from a common chiron.

Thus, (2S)-2-isopropyl-4-pentenal 8, easily prepared from the acid 7,²⁸ was converted to a 6:1 mixture of diastereomeric benzylic alcohols H, which was used to assemble the ester G. Ring-closing metathesis in the presence of the Grubbs I catalyst^{29,30} gave the 9-membered lactone F (Figure 4). Regioand stereoselective introduction of an amino and an alcohol group provided the entirely functionalized 8-aryloctanoic acid framework of aliskiren and of selected amide variants. In this paper, we elaborate on various aspects of this synthesis, particularly with regard to the preparation and functionalization of the 9-membered lactones using a ring-closing metathesis en route toward aliskiren.

RESULTS AND DISCUSSION

Synthesis of the 9-Membered Lactone. Initially, we focused on the 4-methoxy analogue (3, Figure 4) in order to explore aspects of stereoselectivity and conditions for the ringclosing metathesis. As will become evident, it was important to attempt the ring-closing metathesis reaction with a higher proportion of the (R)-ester derived from alcohol diastereomer **11** (Scheme 2).³¹

Attempts to add various organometallic derivatives of 9 (X =Br; M = Mg-*n*-Bu; TMEDA; Mg-*n*-Bu inverse addition; Mg-*n*-Bu, $CeCl_3$; Li, $CeCl_3$; Et_2ZnLi ; $Mg(n-Bu)_2Li$) to the aldehyde 8 resulted in modest to low yields and unsatisfactory ratios. After extensive trials, the best ratio of inseparable diastereomers 11 and 12 favoring the (R)-lactone was obtained with a mixed Mg/Li Grignard reagent described by Inoue³² in 68% yield. Application of the same protocol to the aliskiren aryl moiety 10 led to a better ratio of 13 and 14 (5-8:1) of diastereomers. Esterification by the Yamaguchi method³³ afforded the diastereomeric mixture of esters 15:16 and 17:18, maintaining the same ratios, respectively. In our original report, we had utilized the Grubbs first-generation catalyst due to its availability at time. A 5 mol % loading in a 10 mM solution of the esters 15:16 or 17:18 in toluene led, after 78 h at room temperature, to the intended lactones 19 and 21, in 65% and 81% yield, respectively. In this process, the mixture of esters was first stirred with Ti(O-i-Pr)₄ for 24 h before adding the catalyst. Then, to ensure complete conversion of the (R)-esters 15 and 17, an additional 5-10 mol % of the first generation Grubbs catalyst was added every 24 h. In the absence of Ti(O-*i*-Pr)₄, the low yield of the cyclization was attributed to the coordination of the Ru catalyst to the proximal ester carbonyl group.³⁴ The results of the cyclization of different batches of diastereomeric esters under different conditions and catalysts are shown in Table 1. Starting with an ester mixture enriched in the (R)-isomer, we obtained the (R)-lactone in 71% yield in the presence of the first-generation Grubbs catalyst (G1) at room temperature (Table 1, entry 9). Using a 4:1 mixture of esters 15 and 16 in the presence of the second-generation Hoveyda-Grubbs catalyst $(\dot{H}-G2)^{35}$ at reflux resulted in the formation of 19 within 20 min in 64% yield (Table 1, entry 8). Ultimately, utilizing the second-generation Hoveyda-Grubbs catalyst and a

6:1 mixture of 17 and 18, the cyclization was completed within 19 h at 50 °C to give 21 in 72% yield (Table 1, entry 13). We were at first intrigued by the observation that only the (*R*)-esters 15 and 17 were transformed to the corresponding lactones 19 and 21, respectively. At the time of execution, reports of the formation of 9-membered functionalized lactones by ring-closing metathesis were sparse.^{36,37}

Functionalization of the 9-Membered Lactone. Our next task was to explore methods for the regio- and stereoselective introduction of an amino alcohol unit on the double bond of lactones 19 and 21. We surmised that in the presence of NBS, CuI, and $TsNH_2^{38}$ a bromonium ion (27) would be attacked to give the corresponding vicinally substituted 9-membered lactone 23 (arbitrary regio- and stereochemistry, Scheme 3). Instead, the products formed with a good conversion were found to be the bromolactones 24 and 25 in a ratio of 3.9:1 arising from an intramolecular attack of the carboxylate released by concomitant formation of guinonoid intermediates followed by an *anti* attack of TsNH₂ relative to the bulky isopropyl group. The structures of 24 and 25 were assigned by detailed NMR studies. The bromolactone structure (25) was also confirmed by X-ray crystallography. Reductive cleavage of the benzylic sulfonamide group in the mixture of 24 and 25 with Et₃SiH and trifluoroacetic acid gave the bromolactone 26 in a good overall yield from 19.

Next, we converted the 9-membered lactone **19** into the corresponding epoxide **28** (Scheme 4). The major product with the designated stereochemistry as shown was formed in excellent yield at 0 °C or room temperature. Surprisingly, treatment with NaN₃-NH₄Cl in methoxyethanol or Bu₄NN₃ in refluxing toluene gave back starting epoxide. Upon treatment with Et_3SiH and trifluoroacetic acid, it was expected that the benzylic carbon oxygen bond would be cleaved. Instead, a mixture of the three products **29**, **30**, and **31** (6:1:1 ratio) was obtained whose structures are proposed on the basis of detailed NOE studies.³¹ A plausible mechanism is shown in Scheme 4.

Dihydroxylation of **19** under standard conditions led to the dihydroxy lactone **32** and the dibenzoate **33** after benzoylation,²⁸ whose structures and stereochemistry was confirmed by X-ray analysis,³¹ validating a trajectory of approach that would be opposed

Table 1. Formation of the 9-Membered Lactones 19 and 21

^{*a*}Isolated yield. ^{*b*}Conversion was completed within 20 h. ^{*c*}An extra 5 mol % of the catalyst was added if no further progress was noticed by TLC. **G1**, **G2**, and **H–G2** refer to Grubbs first generation, Grubbs second generation, and Hoveyda–Grubbs 2nd generation catalyst.

Scheme 3. Attempted Bromoamination of the Macrocyclic Lactone 19

to the orientation of the resident C-8 4-methoxyphenyl group (Scheme 5).²⁸ Although this stereochemical outcome could not be predicted a priori in a quasi C_2 -symmetrical 9-membered lactone with respect to the orientation of the isopropyl groups at C-2 and C-7 such as in **19**, it became clear that C-8 aryl group may have exerted a steric influence in the dihydroxylation step.

Encouraged by this result, we attempted a Du Bois aziridination reaction,³⁹ expecting to obtain the aziridine with the "up" orientation. We would then attempt a solvolysis with an appropriate carboxylic acid, hoping for a regioselective opening at the C-4 position, thereby generating the vicinal *trans*-amino alcohol (Scheme 6).

Scheme 4. Epoxidation of the Lactone 19 and Further Transformations

Scheme 5. Diastereoselective Dihydroxylation of Lactone 19²⁸

In the event, treatment of 19 and 21 individually with trichloroethylsulfamate in the presence of Rh₂(tfacam)₄ and PhI(OAc)₂ according to Du Bois³⁹ led to the desired aziridines 34 and 35 in excellent yields (Scheme 6). Suspecting the need for a strong acid to activate the N-(trichloroethyl)sulfamoyl group in the solvolysis, aziridines 34 and 35 were treated with a dilute solution of trifluoroacetic acid in CH₂Cl₂. Remarkably, in both cases, a double-ring contraction occurred to give the pyrrolidine lactones 36 and 37, respectively, in excellent yields (Scheme 6).²⁸ It should be noted that this simple solvolytic reaction produced the desired (4S,5S) amino alcohol with exquisite regio- and stereocontrol. Confirmation of the structure and stereochemistry of 36 (hence 37) was obtained from the X-ray crystal structure of the amide 38. Treatment of 36 with AlMe₃ and *n*-butylamine gave the amide 38 which was converted to the N-Boc analogue 40, accompanied by the lactone 39, the structure of which was ascertained by X-ray crystallography.³¹ Alternatively, alkaline hydrolysis of the sulfamate group in 37 followed by

acidification and N-protection led to the known N-Boc lactone 41 (Scheme 6).^{16b,40}

Completion of the Total Synthesis of Aliskiren. To test the compatibility of the sulfamate group under amide forming conditions from the lactone 37, we were pleased that treatment with *n*-butylamine in the presence of AlMe₃ gave an excellent yield of the *n*-butylamine derivative **42** (Scheme 7). However, the same conditions to form an amide failed with the sterically demanding neopentylic 3-amino-2,2-dimethylpropionamide (ADPA). The utility of 2-hydroxypyridine as an activator in amide formation is well documented.⁴¹ In fact, this method is claimed to work in high yield in a number of patents describing aliskiren.^{25,42} In our hands, the methods described for the N-Boc derivative corresponding to the lactone 37 resulted in low yields. Prolonged heating of 37 with ADPA in neat Et₃N at 85 °C led to a 61% yield of the desired amide 43, with recovery of starting lactone. We then decided to convert the N-sulfamovl group in 43 into an N-Boc group to give 44 in good overall yield. There remained to cleave the benzylic amine bond and the N-Boc group to complete the total synthesis of aliskiren. Thus, treatment of 44 with Na in liquid ammonia in the presence of t-BuOH followed by acid cleavage of the *N*-Boc group gave aliskiren (1). Overall, our linear synthesis comprised 11 steps and a 7% unoptimized yield starting from aldehyde 8.28 After completion of this work, Foley and Jamieson described a conceptually innovative method for an acid-promoted aminolysis of lactones that has since been applied toward the synthesis of aliskiren.^{43,44}

What about the (*S*)-Lactones 20 and 22? We previously commented on the exquisite selectivity of the Grubbs metathesis reaction with the first-generation catalyst. In fact, using an

Scheme 6. Elaboration of 9-Membered Lactones via Aziridination and Ring Contraction

Scheme 7. Completion of the Synthesis of Aliskiren (1)

inseparable mixture of the diastereomeric esters 15 and 16 (as well as 17 and 18) led to a single diastereomer in each case involving the cyclization of the (R)-esters to give the 9-membered lactones 19 and 21, respectively (Scheme 2). The other diastereomeric esters 16 (and 18) were recovered in poor yield and contaminated with some other metathesis side products. To further study the fate of the (S)-ester 16, we prepared it in a stereoselective manner (Scheme 8). Thus, allylic transposition of allyl enolcarbonate 46 in the presence of Pd₂(dba)₃ catalyst, (S)-t-BuPHOX ligand,^{26,45} and BHT as additive²⁷ led to the ketone 48 in good yield and acceptable enantiomeric excess (average of 90% yield and 88 to 91% ee).

Scheme 8. Catalytic Asymmetric Synthesis of (S)-Ester 16

The same ketone was also prepared by arylation of the Weinreb amide derivative 47 of (2S)-isopropylbuta-4-enoic acid 7 independently prepared via an Evans²² or MacMillan^{28,46} asymmetric allylation. Reduction with a slow addition of DIBAL-H, keeping the temperature at -78 °C, led quantitatively to the (S)-alcohol 12 with a diastereomeric ratio of >20:1. Esterification with the acid 7 using the Yamaguchi method³³ led to 16.

In the presence of 5 mol % of the second-generation Hoveyda-Grubbs catalyst (H-G2) at 10 mM in refluxing toluene, the (S)-ester 16 yielded 30% of the C_2 -symmetrical trans-trans bis-unsaturated dilactone 49 and a mixture of nonsymmetric dilactones as double-bond isomers 50 (Scheme 9). The structure of 49 was also confirmed by single-crystal X-ray analysis. Reductive cleavage of the benzylic ester bonds in 49 led to the acid 51, which is a known intermediate in the Speedel process for the synthesis of aliskiren.^{24,25} Controlled catalytic hydrogenation of the double bonds in 49 led to the saturated dilactone 53, which upon reductive cleavage in acidic media yielded acid 54. Alternatively, hydrogenation of the mixture of isomers corresponding to dilactones 50 afforded the headto-head dilactone 52 (Scheme 9).

Judging from the results using the Grubbs first-generation catalyst (G1) with the (R)-esters 15 and 17 (10 mol % catalyst, 72 h. rt, toluene at 10 mM concentration), we speculate that the formation of the corresponding 9-membered lactones 19 (and 21) can be attributed to the contribution of cooperative stereochemical, stereoelectronic, and conformational effects leading first to alkylidene Ru complexes (exemplified by the structure 15a as one of the two possible intermediates). Presumably, the olefinic termini are favorably aligned with minimal steric interaction to lead to the Ru-metallacycle 15b, which eventually collapses to the intended lactone 19 (Scheme 10A). In contrast, the transition state starting with the (S)-ester 16 will be subject to a significant steric clash between the isopropyl and aromatic moieties, thereby slowing

Scheme 9. Cross-Metathesis Reaction of the (S)-Ester 16 and Reductive Cleavage of Macrocylic Dilactones

Scheme 10. Possible Ru-Metallacyclic Intermediates^a

^{*a*}(A) First-generation Grubbs (G1) and second-generation Hoveyda–Grubbs (H–G2) catalysts at 10 mM (72 h at rt and 20 min, toluene reflux, respectively). (B) H–G2 catalyst at 1 mM (6 h, toluene reflux) and 10 mM (24 h, toluene reflux). (C) H–G2 catalyst at 10 mM (24 h, toluene reflux). Only one alkylidene Ru-intermediate is shown.

down the reaction (Scheme 10B). The same conclusion would also apply in the case of ester 18.

In the presence of the more robust second-generation Hoveyda–Grubbs catalyst (H–G2 5 mol %, at a concentration of 10 mM in toluene at 110 °C for 20 min), the (R)-ester 15 in a mixture containing the (S)-ester 16 as the minor isomer is converted to lactone 19 in 64% yield. Under the same conditions, the minor (S)-ester 16 undergoes direct dimerization to the macrocyclic dilactones 49 and 50, which were not reverted to starting material under these conditions (Scheme 10B). This was corroborated with the enantioenriched (S)-ester 16 (Scheme 9). Surprisingly, when the reaction was performed at a concentration of 1 mM instead of 10 mM, in refluxing toluene for 6 h, the (S)-ester 16 led to the elusive (S)-lactone 20 in 53% yield, accompanied by the usual dimers 49 and 50 (\sim 24%) (Scheme 10B). The structure of 20 was confirmed by X-ray crystallography.³¹ When heated at reflux temperature in 10 mM in toluene for 24 h in the presence of the second-generation Hoveyda-Grubbs catalyst (H-G2), the (S)-lactone 20 was rapidly converted to the lactones 49 and 50. At a concentration of 1 mM, a diastereomeric mixture of 15 and 16 led to the corresponding lactones 19 and 20 respectively, accompanied by the dimers 49 and 50.

Intrigued by this observation, we subjected the (R)-lactone **19** to the same reaction conditions, only to find that dimerization to **49** and **50** had also taken place (Scheme 10A). We can conclude that, depending on the concentration, the catalyst, and temperature, the (R)-lactone **19** and (S)-lactone **20** are the kinetic products. Dimerization during ring-closing metathesis has been previously reported.⁴⁷

Finally, we subjected the (S)-lactone **20** to an aziridination reaction to give **55** in 25% yield with recovery of starting material (Scheme 11). TFA-induced double-ring contraction as for the (R)-lactone **19** (Scheme 6) gave the known lactone **36** in 88% yield. Presumably, the activation of the *N*-sulfamoyl aziridine lactone in either 9-membered lactones engendered participation by the electron-rich aryl moiety to give a quinonoid oxocarbenium ion which underwent regioselective intramolecular attack liberating the sulfamate group (Scheme 12). The latter would attack the quinonoid benzylic carbon atom with high antiselectivity with regard to

dx.doi.org/10.1021/jo5015195 | J. Org. Chem. 2014, 79, 9531-9545

the C-7 isopropyl substituent leading to the observed pyrrolidine lactone $36^{.28}$

CONCLUSION

In conclusion, we have provided a detailed account of various approaches leading to the total synthesis of the antihypertensive marketed drug aliskiren. Ring-closing metathesis using the Grubbs (G1 and G2) and Hoveyda–Grubbs (H–G2) catalysts with stereochemically distinct esters carrying terminal allyl moieties led to 9-membered lactones which were further elaborated to aliskiren and its p-methoxyphenyl congener. The formation of 9-membered lactones from diastereomeric (R)- and (S)-esters 15 and 16 were found to be concentration dependent and favored at a concentration of 1 mM in toluene using the Hoveyda-Grubbs second-generation catalyst (H-G2). At higher concentrations, the (R)-ester 15 afforded the expected 9-membered lactone, while the (S)-ester 16 led to a mixture of macrocyclic dilactones. Further studies focusing on the nature and stereochemistry of substituents in related cyclizations by ring-closing metathesis are in progress and will be reported in due course.

EXPERIMENTAL SECTION

General Procedure. All reactions were performed in oven-dried glassware under an argon atmosphere using dry, deoxygenated solvents. Dichloromethane and toluene were dried by passage through an activated alumina column under argon (solvent drying system (SDS)). Reagents were purchased and used without further purification. Reactions were monitored by analytical thin-layer chromatography (TLC) carried out on 0.25 mm silica plates that were visualized under a UV lamp (254 nm) and developed by staining with ceric ammonium molybdate, p-anisaldehyde, and/or potassium permanganate solution. Flash column chromatography was performed using silica (particle size 40–63 μ m, 230–400 mesh) at increased pressure. FTIR are reported in reciprocal centimeters (cm⁻¹). NMR spectra (¹H, ¹³C, DEPT 135, COSY, HMQC, NOESY) were recorded at either 300, 400, 500, or 700 MHz. Chemical shifts for ¹H NMR spectra are recorded in parts per million relative to trimethylsilane (TMS, $\delta = 0.00$ ppm) with the solvent resonance as the internal standard (CH₃Cl, δ = 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, h = hextet, m = multiplet, and br = broad), coupling constants in hertz (Hz), integration (xH). Chemical shifts for ¹³C NMR spectra are recorded in parts per million using the central peak of CDCl₃ (δ = 77.16 ppm) as the internal standard. Optical rotations were determined with a polarimeter at 589 nm using a 1 dm cell at ambient temperature and are reported in units of deg·cm³·g⁻¹·dm⁻¹. Melting points are given as ranges and are reported in °C.

(15,25)-2-Isopropyl-1-(4-methoxyphenyl)pent-4-en-1-ol (12). A solution of 1.5 M of DIBAL-H in toluene (1.8 mL, 2.7 mmol, 1.5 equiv) was added in a slow dropwise manner to a solution of ketone 48 (0.42 g, 1.8 mmol, 1.0 equiv) in THF (10 mL) at -78 °C. The solution was kept at -78 °C for at least 3 h and then allowed to slowly warm to room temperature. Silica gel was added until the reaction mixture stopped to generate bubbles. The mixture was filtered on a silica pad (silica gel, 2.5 cm diameter ×4.0 cm height; 5 V diethyl ether, then 2 V ethyl acetate) to yield alcohol 12 (0.40 g, 95%, dr >20:1) as a colorless oil: $R_f = 0.11$ (1:9, diethyl ether:hexanes); $[\alpha]_D^{20} - 12$ (c 3.0, CDCl₃) (from ketone 48 with 83% ee, prepared with the PdAAA protocol²⁷); ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.23 (m, 2H), 6.89– 6.85 (m, 2H), 5.53 (ddt, J = 17.1, 10.1, 7.1 Hz, 1H), 4.88–4.79 (m, 2H), 4.58 (dd, J = 7.7, 3.3 Hz, 1H), 3.81 (s, 3H), 2.16-2.04 (m, 1H), 2.04-1.95 (m, 1H), 1.92–1.83 (m, 1H), 1.74–1.68 (m, 1H), 1.67 (dd, J = 3.4, 0.4 Hz, 1H), 0.98–0.93 (m, 6H); 13 C NMR (75 MHz, CDCl₃) δ 159.2, 138.9, 136.5, 128.1, 115.1, 113.9, 75.9, 55.4, 50.6, 31.3, 27.2, 21.5, 18.4; IR (neat) 3454, 3005, 2962, 2940, 2880, 2845, 1615, 1515, 1468, 1248,

1177, 1038 cm⁻¹; HRMS (ESI-TOF) m/z calcd for $C_{15}H_{22}NaO_2$ $[M + Na]^+$ 257.1512, found $[M + Na]^+$ 257.1516.

(S)-(1S,2S)-2-Isopropyl-1-(4-methoxyphenyl)pent-4-en-1-yl-2-isopropylpent-4-enoate (Ester 16). Triethylamine (70 µL, 0.51 mmol, 1.2 equiv), 2,4,6-trichlorobenzoyl chloride (80 µL, 0.51 mmol, 1.2 equiv), and 4-(dimethylamino)pyridine (62 mg, 0.51 mmol, 1.2 equiv) were successively added to a solution of acid 7 (64 mg, 0.45 mmol, 1.05 equiv) in dry toluene (3 mL) at 0 °C. The resulting white slurry was stirred at 0 °C for 10 min during which the white slurry turned yellow. A solution of alcohol 12 (0.10 g, 0.43 mmol, 1.0 equiv) in dry toluene (1 mL) was added to the reaction vessel containing the yellow slurry in a dropwise manner at 0 °C. The flask that contained alcohol 12 was rinsed three times with dry toluene (1 mL), and the reaction mixture was allowed to warm to room temperature and monitored by TLC analysis until no more starting material was observed (Around 4 h at room temperature). The solvent was removed, and the resulting yellow solid was taken up in ethyl acetate (10 mL) and H_2O (10 mL). The aqueous layer was separated and extracted with ethyl acetate $(3 \times$ 10 mL). The combined organic layers were successively washed with a 10% aqueous solution of acid citric (10 mL) and a saturated aqueous solution of sodium bicarbonate (10 mL). The organic layer was dried over magnesium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (silica gel, 2.5 cm × 14.0 cm; 1:19 diethyl ether/hexanes) to yield ester 16 (110 mg, 72%) as an oil: $R_f =$ 0.53 (1:9 diethyl ether/hexanes); $[\alpha]_D^{20} - 58$ (c 2.0, CDCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.21 (m, 2H), 6.87-6.77 (m, 2H), 5.79-5.58 (m, 2H), 5.57-5.37 (m, 1H), 5.05-4.91 (m, 2H), 4.87-4.73 (m, 2H), 3.79 (s, 3H), 2.39-2.14 (m, 3H), 2.12-1.71 (m, 5H), 0.96-0.89 (m, 6H), 0.84 (d, J = 6.8 Hz, 3H), 0.74 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.4, 159.1, 138.3, 136.2, 132.4, 129.1, 116.6, 115.4, 113.5, 77.1, 55.3, 52.8, 48.7, 34.0, 30.9, 30.7, 27.2, 21.2, 20.5, 20.3, 18.0; IR (neat) 3075, 2957, 2931, 2873, 2837, 1728, 1612, 1513, 1249, 1169, 1035 cm⁻¹; HRMS (ESI-TOF) m/z calcd for $C_{23}H_{34}NaO_3 [M + Na]^+ 381.2400$, found $[M + Na]^+ 381.2400$.

Lactone 20. Hoveyda-Grubbs second-generation catalyst (3 mg, 0.048 mmol, 0.06 equiv) was added to a solution of 16 (30 mg, 0.084 mmol, 1.0 equiv, dr 20:1) in dry toluene (84 mL), and the mixture was stirred at reflux for 6 h. The reaction mixture was cooled to room temperature, then an excess of ethyl vinyl ether was added and gently evaporated. The residue was purified by flash chromatography (silica gel, 1.5 cm diameter ×20.0 cm height, 1:50 ethyl acetate/hexanes) to yield **20** (16 mg, 53%) as pure white crystals: mp 89–91 °C; $R_f = 0.55$ (1:9 diethyl ether/hexanes); $[\alpha]_{D}^{20}$ –119 (c 0.5, CDCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.7 Hz, 1H), 6.88 (d, J = 8.6 Hz, 1H), 5.74– 5.64 (m, 1H), 5.55 (ddd, J = 11.0, 10.9, 6.1 Hz, 1H), 3.80 (s, 2H), 3.10-3.00 (m, 1H), 2.87–2.77 (m, 1H), 2.48 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 2.23-2.10 (m, 1H), 2.00 (dq, J = 13.5, 6.7 Hz, 1H), 1.90-1.81 (m, 1H), 1.48 (dq, J = 13.2, 6.6 Hz, 1H), 1.00 (d, J = 6.7 Hz, 3H), 0.84-0.79 (m, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 159.1, 133.5, 131.0, 128.4 (2H), 126.2, 113.9 (2H), 78.2, 55.4, 50.7, 49.5, 28.8, 26.9, 26.5, 23.4, 22.4, 21.9, 20.3, 19.0; IR (neat) 3008, 2956, 2871, 2836, 1735, 1612, 1513, 1463, 1386, 1367, 1247, 1158, 1112, 1030 cm⁻¹; HRMS (ESI-TOF) m/z calcd $C_{21}H_{31}O_3 [M + H]^+ 331.2268$, found $[M + H]^+$ 331.2259

Lactone 21. See ref 28. Also prepared from addition of Hoveyda–Grubbs second-generation catalyst (4 mg, 0.0064 mmol, 0.06 equiv) to a solution of esters 17:18 (52 mg, 0.11 mmol, 1.0 equiv, dr 5:1) in dry toluene (9 mL) with stirring at 50 °C for 2 h. The reaction mixture was cooled to room temperature, filtered on silica and a Fluorisil pad, and then rinsed using 50% ethyl acetate/hexanes. The residue was purified by flash chromatography (silica gel, 1.5 cm diameter × 20.0 cm height, 1:9 ethyl acetate/hexanes) to yield **21** (33 mg, 72%).

Lactones 24 and 25. A solution of NBS (29 mg, 0.16 mmol, 1.1 equiv) was added in a dropwise manner to a mixture of lactone **19** (47 mg, 0.14 mmol, 1 equiv), copper(I) iodide (3 mg, 0.015, 0.11 equiv), and *p*-toluenesulfonamide (26 mg, 0.15 mmol, 1.1 equiv) in dichloromethane (3 mL). The mixture was stirred at room temperature for 4 h, and then H_2O (4 mL) was added in a round-bottom flask covered with aluminum foil. The mixture was diluted with ethyl acetate (15 mL) and stirred for a few minutes, and then layers were separated.

The aqueous layer was back-extracted with ethyl acetate (5 mL), and the organic layers were combined, washed with brine (10 mL), dried over sodium sulfate, and concentrated. A diastereomeric ratio of 3.9:1 was observed by ¹H NMR of the crude mixture. The residue was purified by flash chromatography (silica gel, 1.5 cm diameter ×21 cm height, 1:9 to 1:4 ethyl acetate/hexanes) to yield the lactone **24** (42 mg, 52%) as a white solid along with impure fractions of **25**, which could be obtained as a pure white solid by recrystallization in methanol. Also, starting from 63 mg (0.19 mmol, 1 equiv) of lactone **19**, 14 mg (13%) of lactone **25** could be obtained pure by flash chromatography (silica gel, 2.5 cm × 20 cm, 0 to 1:19 ethyl acetate/hexanes) and 64 mg of impure lactone **24** which was repurified by flash chromatography (silica gel, 1.5 cm diameter × 20 cm height, 1:4 ethyl acetate/hexanes) to yield the pure lactone **24** (40 mg, 36%).

Lactone 24: $R_f = 0.29$ (1:4 ethyl acetate/hexanes); (recrystallized from 2-propanol) mp 113–115 °C; $[\alpha]_D^{20} + 49$ (*c* 0.5, CHCl₃); ¹H NMR (700 MHz, CDCl₃) δ 7.42–7.39 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.91–6.88 (m, 2H), 6.63–6.60 (m, 2H), 5.34 (d, *J* = 7.7 Hz, 1H), 4.45–4.43 (m, 1H), 4.20 (dd, *J* = 9.2, 8.1 Hz, 1H), 4.16 (ddd, *J* = 9.0, 4.4, 1.5 Hz, 1H), 3.73 (s, 3H), 2.96 (ddd, *J* = 11.3, 7.6, 3.8 Hz, 1H), 2.58–2.51 (m, 1H), 2.31 (s, 3H), 2.31–2.27 (m, 1H), 2.11 (ddd, *J* = 14.4, 11.2, 3.1 Hz, 1H), 2.03 (ddd, *J* = 14.7, 9.2, 5.4 Hz, 1H), 1.81–1.77 (m, 1H), 1.69 (ddd, *J* = 14.9, 4.4 Hz, 1H), 1.47–1.42 (m, 1H), 0.97 (d, *J* = 7.0 Hz, 3H), 0.95 (d, *J* = 6.9 Hz, 3H), 0.82 (d, *J* = 7.0 Hz, 3H), 0.71 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 170.9, 158.8, 142.6, 138.2, 132.5, 129.2 (2C), 128.1 (2C), 127.1 (2C), 113.8 (2C), 81.1, 60.5, 55.4, 50.0, 45.7, 42.9, 32.0, 30.2, 29.2, 28.1, 21.7, 21.6, 19.7, 18.5, 16.2; IR (neat) 3252, 2958, 2923, 2852, 1732, 1704, 1612, 1514, 1463, 1443, 1325, 1248, 1218, 1179, 1160, 1093, 1046 cm⁻¹; HRMS (ESI-TOF) *m*/*z*

calcd for $C_{28}H_{38}^{79}BrNNaO_5S [M + Na]^+ 602.1546$, found $[M + Na]^+ 602.1517$.

Lactone 25: $R_f = 0.21$ (1:4 ethyl acetate/hexanes); (gradual dec) (recrystallized from ethanol) mp 151–167 °C; $[\alpha]_D^{20}$ –56 (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.48–7.44 (m, 2H), 7.07–7.03 (m, 2H), 6.92–6.86 (m, 2H), 6.65–6.59 (m, 2H), 5.30 (d, *J* = 8.5 Hz, 1H), 4.19–4.16 (m, 1H), 4.12–4.07 (m, 1H), 3.69 (s, 3H), 2.76–2.66 (m, 2H), 2.40–2.29 (m, 4H), 2.29–2.21 (m, 1H), 2.07 (ddd, *J* = 14.6, 8.2, 3.4 Hz, 1H), 1.66 (ddd, *J* = 14.4, 9.4, 1.5 Hz, 1H), 1.63–1.55 (m, 1H), 1.50–1.43 (m, 1H), 1.40 (ddd, *J* = 14.4, 9.3, 5.0 Hz, 1H), 1.00 (d, *J* = 7.0 Hz, 3H), 0.81 (d, *J* = 7.0 Hz, 3H), 0.79 (d, *J* = 6.8 Hz, 3H); 0.69 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 171.3, 159.3, 143.1, 137.5, 132.3, 129.3 (2C), 128.3 (2C), 127.3 (2C), 114.0 (2C), 78.8, 60.4, 55.3, 49.0, 45.7, 42.9, 31.7, 30.3, 29.5, 28.1, 22.0, 21.6, 19.5, 18.1, 16.0; IR (neat) 3273, 2966, 2930, 2860, 2880, 1740, 1727, 1667, 1615, 1518, 1467, 1449 1329, 1256, 1183, 1161, 1052, 1041 cm⁻¹; HRMS (ESI-TOF) *m*/*z* calcd for C₂₈H₃₈⁷⁹BrNNaO₅S [M + Na]⁺ 602.1546, found [M + Na]⁺ 602.1535.

Lactone 26. Starting from the lactone 19 (66 mg, 0.20 mmol, 1.0 equiv), the bromosulfonamidation protocol was followed and the crude mixture of the bromosulfonamides 24:25 (dr 3.9:1) was dissolved in dichloromethane and cooled to 0 °C. Triethylsilane (0.16 mL, 1.0 mmol, 5.0 equiv) was added to the solution followed by TFA (0.1 mL). The solution was allowed to slowly reach room temperature, and the progress of the reaction was monitored by TLC. Volatiles were removed under vacuum with a rotary evaporator, and the residue was purified by flash chromatography (silica gel, 2.0 cm diameter ×20 cm height, 1:9 ethyl acetate/hexanes) to yield bromolactone **26** (62 mg, 75%, 2 steps) as an oil: $R_f = 0.43$ (1:4, ethyl acetate/hexanes); $[\alpha]_D^{20} + 11$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.15–7.01 (m, 2H), 6.89–6.75 (m, 2H), 4.26–4.20 (m, 1H), 3.77 (s, 3H), 3.70 (ddd, J = 6.8, 5.2, 1.0 Hz, 1H), 2.79 (ddd, J = 11.3, 7.8, 3.9 Hz, 1H), 2.71 (dd, J = 13.8, 5.2 Hz, 1H), 2.54–2.33 (m, 2H), 2.13 (ddd, J = 14.6, 7.8, 3.4 Hz, 1H), 1.85–1.53 (m, 5H), 0.96–0.91 (m, 6H), 0.88 (d, J = 7.0 Hz, 3H), 0.83 (d, J = 6.8 Hz, 3H); ^{13}C NMR (101 MHz, CDCl₃) δ 171.5, 158.2, 133.4, 129.9 (2C), 114.1 (2C), 79.3, 55.4, 49.9, 42.8, 41.7, 37.8, 36.2, 31.21, 30.23, 29.3, 19.7, 19.6, 18.4, 18.3; IR (neat) 2966, 2940, 2879, 1736, 1615, 1515, 1468, 1249, 1226, 1209, 1180, 1069, 1041 cm⁻¹; HRMS (ESI-TOF) *m*/ z calcd for $C_{21}H_{31}^{79}BrNaO_3 [M + Na]^+ 433.1349$, found $[M + Na]^+$ 433.1340.

Epoxide 28. m-CPBA (77%) (65 mg, 0.29 mmol, 1.9 equiv) was added to a solution of lactone 19 (51 mg, 0.15 mmol, 1.0 equiv) in dichloromethane (1 mL), and the reaction mixture was stirred for 1 h at room temperature. The solution was diluted with diethyl ether (5 mL) and washed with a saturated aqueous solution of sodium bicarbonate $(2 \times 10 \text{ mL})$. The organic layer was dried over magnesium sulfate, filtered, and concentrated to yield 47 mg of the crude epoxide 28 (dr 10:1) as a gel: $R_f = 0.52$ (1:4, ethyl acetate/hexanes). Only the major diastereomer is reported: ¹H NMR (300 MHz, CDCl₃) δ 7.33–7.27 (m, 2H), 6.92-6.85 (m, 2H), 5.75 (d, J = 11.1 Hz, 1H), 3.81 (s, 3H), 3.29-3.20 (m, 1H), 3.04 (ddd, J = 10.7, 3.7, 1.8 Hz, 1H), 2.60–2.50 (m, 1H), 2.25 (ddd, J = 11.4, 5.2, 1.9 Hz, 1H), 2.21–2.07 (m, 1H), 2.07–1.93 (m, 2H), 1.58–1.38 (m, 2H), 1.03 (d, J = 6.5 Hz, 3H), 0.99–0.92 (m, 1H), 0.89 (d, J = 6.9 Hz, 3H), 0.84 (d, J = 6.9 Hz, 3H), 0.79 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.7, 159.6, 131.7, 128.9 (2C), 114.0 (2C), 78.0, 61.0, 55.4, 55.4, 52.7, 48.6, 28.5, 27.0, 26.5, 25.0, 22.0, 21.8, 19.7, 15.9; IR (neat) 3004, 2967, 2947, 2936, 2929, 2880, 1733, 1519, 1466, 1393, 1375, 1277, 1252, 1204, 1179, 1122, 1117, 1038 cm⁻¹; HRMS (ESI-TOF) m/z calcd for $C_{21}H_{31}O_4$ [M + H]⁺ 347.2217, found $[M + H]^+$ 347.2204 and calcd for $C_{21}H_{30}NaO_4$ $[M + Na]^+$ 369.2036, found $[M + Na]^+$ 369.2029.

Lactones 29, 30, and 31. To a solution of the crude epoxide 28 (47 mg) in dichloromethane (1 mL) was added trifluoroacetic acid (60 μ L). The solution was stirred 10 min,a nd then the reaction was stopped by adding a saturated aqueous solution of sodium bicarbonate (5 mL) followed by ethyl acetate (10 mL). The organic layer was washed with a saturated aqueous solution of sodium bicarbonate (5 mL), dried over magnesium sulfate, filtered, and concentrated. A ratio of 6:1:1 was observed in the ¹H NMR spectrum of the crude mixture. The residue was purified by flash chromatography (silica gel, 2.0 cm diameter × 20.0 cm height, 1:19 ethyl acetate:hexanes) to yield lactones **29** (15 mg, 29%) + **30** (4 mg, 8%) + **31** (4 mg, 8%) + 7 mg of mixed fractions. All lactones produced from this reaction were clear oils.

Lactone 29: $R_f = 0.41$ (1:4 ethyl acetate/hexanes); $[\alpha]_{D}^{20} + 14$ (*c* 1.5, CHCl₃); ¹H NMR (700 MHz, CDCl₃) δ 7.24–7.21 (m, 2H), 6.89–6.86 (m, 2H), 4.53–4.43 (m, 1H), 4.25 (d, *J* = 10.5 Hz, 1H), 3.89–3.87 (m, 1H), 3.80 (s, 3H), 2.81 (ddd, *J* = 11.5, 7.3, 3.8 Hz, 1H), 2.59–2.52 (m, 1H), 2.17–2.11 (m, 1H), 2.08 (ddd, *J* = 14.0, 7.3, 3.9 Hz, 1H), 2.00–1.93 (m, 1H), 1.74 (ddd, *J* = 14.3, 12.5, 2.3 Hz, 1H), 1.64 (ddd, *J* = 14.4, 12.9, 2.8 Hz, 1H), 1.43–1.36 (m, 1H), 0.93–0.90 (m, 6H), 0.78 (d, *J* = 7.0 Hz, 3H), 0.74 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 173.9, 159.6, 132.7, 128.6 (2C), 114.1 (2C), 83.2, 76.1, 70.5, 55.4, 41.0, 39.7, 29.0, 28.3, 26.4, 25.8, 20.9, 19.8, 17.9, 15.9; IR (neat) 3018, 3003, 2965, 2954, 2941, 2935, 2923, 2913, 2905, 2881, 2844, 1724, 1617, 1590, 1518, 1469, 1446, 1391, 1373, 1367, 1350, 1248, 1226, 1175, 1157, 1129, 1082, 1056, 1030, 1007 cm⁻¹; HRMS (ESI-TOF) *m*/*z* calcd for C₂₁H₃₀NaO₄ [M + H]⁺ 347.2217, found [M + H]⁺ 347.2225 and calcd for C₂₁H₃₀NaO₄ [M + Na]⁺ 369.2036, found [M + Na]⁺ 369.2044.

Lactone 30: $R_f = 0.46$ (1:4 ethyl acetate/hexanes); $[\alpha]_{20}^{20} + 39$ (*c* 0.4, CHCl₃); ¹H NMR (700 MHz, CDCl₃) δ 7.24–7.21 (m, 2H), 6.88–6.85 (m, 2H), 4.50 (ddd, J = 9.3, 3.2, 2.1 Hz, 1H), 4.41 (d, J = 9.3 Hz, 1H), 4.08 (ddd, J = 9.2, 5.0, 2.0 Hz, 1H), 3.79 (s, 3H), 2.70 (ddd, J = 9.8, 9.3, 5.0 Hz, 1H), 2.22 (ddd, J = 13.1, 10.0, 3.3 Hz, 1H), 2.20–2.13 (m, 2H), 2.13–2.06 (m, 2H), 1.92 (ddd, J = 12.4, 9.3 Hz, 1H), 1.60–1.53 (m, 1H), 0.96 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 6.1 Hz, 3H), 0.89 (d, J = 6.0 Hz, 3H), 0.71 (d, J = 6.8 Hz, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 179.8, 159.6, 133.2, 128.7 (2C), 114.0 (2C), 85.8, 79.6, 79.4, 55.4, 52.4, 45.4, 31.7, 29.0, 28.6, 26.3, 22.0, 20.6, 19.6, 18.1; IR (neat) 3000, 2967, 2931, 2907, 2899, 2889, 2878, 2859, 1771, 1619, 1519, 1471, 1374, 1251, 1178, 1110, 1093, 1036 cm⁻¹; HRMS (ESI-TOF) *m*/*z* calcd for C₂₁H₃₁O₄ [M + H]⁺ 347.2217, found [M + H]⁺ 347.2220 and calcd for C₂₁H₃₀NaO₄ [M + Na]⁺ 369.2036, found [M + Na]⁺ 369.2042.

Lactone 31: $R_f = 0.31$ (1:4 ethyl acetate/hexanes); $[\alpha]_{D}^{20} - 2$ (*c* 0.4, CHCl₃); ¹H NMR (700 MHz, CDCl₃) δ 7.26–7.23 (m, 2H), 6.87–6.84 (m, 2H), 4.57 (d, *J* = 9.3 Hz, 1H), 4.36–4.32 (m, 1H), 4.25–4.20 (m, 1H), 3.79 (s, 3H), 2.61–2.56 (m, 1H), 2.21–2.15 (m, 2H), 2.15–2.12 (m, 1H), 2.12–2.07 (m, 1H), 2.05–1.95 (m, 1H), 1.84–1.77 (m, 1H), 1.71–1.64 (m, 1H), 1.03 (d, *J* = 6.9 Hz, 3H), 0.93 (d, *J* = 6.7 Hz, 3H), 0.90 (d, *J* = 6.8 Hz, 3H), 0.75 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 178.0, 159.3, 134.3, 128.5 (2C), 113.9 (2C), 85.0, 79.9, 78.7,

55.4, 54.1, 46.9, 31.8, 28.9, 27.9, 26.3, 22.4, 20.8, 19.6, 18.5; IR (neat) 3006, 2966, 2928, 2906, 2897, 2878, 2864, 2858, 2834, 2818, 1770, 1618, 1518, 1469, 1251, 1177, 1038, 1001, 981, 828, 763 cm⁻¹; HRMS (ESI-TOF) m/z calcd for $C_{21}H_{31}O_4$ [M + H]⁺ 347.2217, found [M + H]⁺ 347.2223 and calcd for $C_{21}H_{30}NaO_4$ [M + Na]⁺ 369.2036 and [M + Na]⁺ 369.2044.

Lactone Diol 32. *N*-Methylmorpholine *N*-oxide (53 mg, 0.45 mmol, 1.5 equiv) was added to a solution of lactone **15** (0.1 g, 0.3 mmol, 1 equiv) in acetone (2.4 mL) and distilled water (0.6 mL) at 0 °C, a 2.5 wt % solution of osmium tetra oxide in 2-methyl-2-propanol (0.2 mL, 0.02 mmol, 0.05 equiv) was added, and the reaction mixture was allowed to warm to room temperature. After 1 h of stirring, the reaction media was poured into a cold solution of ethyl acetate (2 mL) and a saturated aqueous solution of sodium thiosulfate (2 mL). The aqueous layer was separated and back-extracted with ethyl acetate (3 × 2 mL). The combined organic layers were dried over sodium sulfate, filtered, and concentrated to leave 102 mg of a black oil which was purified by flash chromatography (silica gel, 1.5 cm × 20 cm; 2:3 ethyl acetate/hexanes) to yield diol **32** (89 mg, 81%, dr 9:1) as a colorless oil.

Diol 32 was also prepared using the same protocol, with 4 wt % solution of osmium tetraoxide in H2O in 91% yield and an estimated dr of 6:1 by NMR. The oil was recrystallized from ethyl acetate:hexanes (1:4) to give white needles with an estimated dr of 7:1; mp 96 to 106 $^{\circ}$ C; $R_f = 0.2$ (2:3 ethyl acetate/hexanes): ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.26 (m, 0.27H), 7.26-7.20 (m, estimated to ~1.6H), 6.88-6.82 (m, 2H), 5.68 (d, J = 11.0 Hz, 1H), 4.50 (d, J = 6.5 Hz, 1H), 3.84–3.69 (m, 4H), 2.47 (s, 2H), 2.29 (ddd, J = 15.9, 6.8, 2.7 Hz, 1H), 2.24–2.01 (m, 2H), 1.92-1.58 (m, 3H), 1.55-1.45 (m, 0.21H), 1.45-1.30 (m, 1H), 1.24-1.08 (m, 1H), 0.98 (d, J = 6.1 Hz, 3H), 0.92-0.71 (m, 9H).Only the major diastereomer is reported for the ¹³C NMR. ¹³C NMR (75 MHz, CDCl₃) δ 175.1, 159.7, 131.0, 128.7, 114.1, 78.8, 77.9, 69.0, 55.4, 53.2, 48.4, 31.6, 30.1, 27.5, 26.9, 21.5, 21.3, 20.2, 15.3; IR (neat) 3394, 2867, 2945, 2881, 1730, 1617, 1519, 1467, 1253, 1179, 1052, 1036 cm⁻¹; HRMS (ESI-TOF) m/z calcd for C₂₁H₃₂NaO₅ [M + Na]⁺ 387.2142, found [M + Na]⁺ 387.2126.

Pyrrolidine Lactone 36. A dry round-bottomed flask was charged with 8 mg (0.014 mmol, 1.0 equiv) of 55, a magnetic stirrer and 0.5 mL of dry dichloromethane ([55] = 0.028 M) were introduced via a glass syringe then added 5 drops of trifluoroacetic acid. The solution was stirred and monitored by TLC analysis (20:80 ethyl acetate-hexanes, CAM). After 10 min, when TLC analysis showed no more starting material, the trifluoroacetic acid and dichloromethane were first removed under reduced pressure at room temperature to leave yellow oil which was purified by flash column chromatography (silica gel, 1.5 cm \times 20 cm; 1:19 ethyl acetate-hexanes) to yield 7 mg (0.0123 mmol, 88%) of the titled compound **36** as a yellow oil: $R_f = 0.44$ (1:9 ethyl acetate:hexanes); $[\alpha]_D^{20}$ +21 (c 0.7, CDCl₃); ¹H NMŘ (400 MHz, CDCl₃) δ 7.33–7–31 (m, 2H), 6.89–6.86 (m, 2H), 4.57–4.52 (m, 2H), 4.34 (d, J = 11.2 Hz, 2H), 4.23 (dd, 5.2 and 8.4 Hz, 1H), 3.78 (s, 3H), 2.64 (ddd, J = 5.6, 7.6, 10.0 Hz, 1H), 2.56-2.47 (m, 1H), 2.41-2.34 (m, 1H), 2.21–2.05 (m, 3H), 1.95 (dd, J = 6.4, 12.8 Hz, 1H), 1.71– 1.62 (m, 1H), 1.04 (d, J = 6.4 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.79 (d, J = 6.4 Hz, 3H).

Lactone 39. Zn(Cu) (0.18 g, 2.8 mmol, 5.0 equiv) was added to a solution of amide 38 (0.36 g, 0.56 mmol, 1.0 equiv) in methanol/ethyl acetate (1 mL, 1:1 v/v) and stirred at room temperature. The reaction was monitored by MS. The mixture was filtered on Celite, rinsed with a minimal amount of MeOH, and concentrated. The resulting solid was dissolved in dry MeOH (5 mL) and cooled to 0 °C, and AcCl (0.36 mL) was added. The solution was allowed to reach room temperature and stirred 24 h. The solvent was removed under vacuum with a rotary evaporator, and the resulting white solid was dissolved in CH₂Cl₂ (2 mL). To this last were added H₂O (2 mL), Boc₂O (0.16 g, 0.73 mmol), 1.3 equiv), K₂CO₃ (0.39 g, 2.8 mmol, 5.0 equiv), and TBAB (43 mg, 0.11 mmol, 0.2 equiv). The mixture was stirred at room temperature and monitored by TLC. An excess of imidazole was added, and then the mixture was acidified to a pH = 3-4, with a 10% solution of citric acid. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 10 mL). The organic layers were combined, dried over sodium sulfate, filtered, and concentrated. The residue was purified

by flash chromatography (silica gel, 1:4 ethyl acetate/hexanes) to yield the known amide 40^{28} (90 mg, 31%) ($R_f = 0.57$, 2:3 ethyl acetate/ hexanes) as a colorless oil and lactone 39 (40 mg, 16%) ($R_f = 0.37$, 2:3 ethyl acetate/hexanes) as a white solid, which was recrystallized from diffusing hexanes to a solution of lactone 39 in a minimal amount of ethyl acetate: mp 140 to 143 °C; $[\alpha]_{D}^{20}$ +14 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 4.60-4.25 (m, 2H), 4.20-4.05 (m, 1H), 3.79 (s, 1H), 4.70-4.55 (m, 1H), 2.40-2.10 (m, 4H), 2.00-1.80 (m, 1H), 1.73 (br s, 2H), 1.50-1.10 (br m, 9H), 1.04 (d, J = 6.8 Hz, 3H), 0.97–0.90 (m, 6H), 0.82 (d, J = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 178.1, 158.4, 136.0, 127.9, 113.7, 80.3, 65.7, 60.0, 55.3, 52.5, 45.1, 29.2, 28.3, 28.2, 27.8, 27.4, 22.2, 20.7, 18.6, 17.8; IR (neat) 2959, 2930, 2874, 2837, 1772, 1690, 1613, 1513, 1466, 1386, 1366, 1245, 1170, 1101, 1033 cm⁻¹; HRMS (ESI-TOF) m/z calcd for $C_{26}H_{40}NO_5$ $[M + H]^+$ 446.2901, found $[M + H]^+$ 446.2891 and calcd for $C_{26}H_{39}NNaO_5 [M + Na]^+$ 468.2720, found $[M + Na]^+$ 468.2729.

Lactone 41. An aqueous 1 M solution of LiOH (1.4 mL, 1.4 mmol, 10 equiv) was added to a solution of lactone 37 (88 mg, 0.14 mmol, 1.0 equiv) in DME (1.4 mL) at 0 °C. The reaction mixture was allowed to reach room temperature and monitored by TLC and MS. The mixture was then acidified with a 1 M HCl solution in MeOH to pH = 3-4, and volatiles were removed under vacuum with a rotary evaporator to give 312 mg of the crude mixture.

Boc₂O (0.10 g, 0.48 mmol, 2.4 equiv) was added to a mixture of the crude deprotected intermediate (0.18 g, estimated to 0.20 mmol, 1.0 equiv) in dichloromethane (1 mL) and H₂O (1 mL) at 0 °C. K₂CO₃ (0.26 g, 1.9 mmol, 10 equiv) and TBAB $(24 \text{ mg}, 74 \mu \text{mol}, 0.37 \text{ equiv})$ were added, and the mixture was allowed to reach room temperature. The mixture was stirred for 16 h at room temperature, and then the layers were separated. The aqueous layer was extracted with CH₂Cl₂ $(3 \times 2 \text{ mL})$, and the organic layers were combined, dried over sodium sulfate, filtered, and concentrated. The residue was purified via flash chromatography (silica gel, 1:9 ethyl acetate:hexanes) to yield Bocprotected lactone 41 (105 mg, >95%) as a colorless oil: $[\alpha]_{\rm D}^{20}$ -70 (c 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.01 (s, 1H), 6.85–6.72 (m, 2H), 4.82 (s, 1H), 4.35–3.95 (m, 4H), 3.83 (s, 3H), 3.62–3.48 (m, 2H), 3.36-3.28 (m, 3H), 2.66-2.53 (m, 1H), 2.35-2.02 (m, 5H), 1.99–1.56 (m, 4H), 1.35–1.10 (m, 9H), 1.04 (d, J = 6.9 Hz, 3H), 0.93 $(d, J = 6.8 \text{ Hz}, 3\text{H}), 0.88 (d, J = 6.7 \text{ Hz}, 3\text{H}), 0.80 (d, J = 6.8 \text{ Hz}, 3\text{H}); {}^{13}\text{C}$ NMR (75 MHz, CDCl₃) δ 177.64, 155.42, 148.26, 148.15, 119.86, 111.86, 111.19, 80.12, 79.22, 69.73, 66.32, 66.29, 61.11, 58.76, 56.14, 46.86, 29.60, 28.59, 28.31, 27.90, 27.66, 21.88, 20.72, 18.36, 18.28; IR (NaCl) 2961, 2874, 2835, 1770, 1682, 1515, 1469, 1391, 1260, 1143, 1028 cm⁻¹; HRMS (ESI-TOF) m/z calcd for C₃₀H₄₇NNaO₇ [M + Na]⁺ 556.3245, found [M + Na]⁺ 556.3241.

Amide 42. A 2 M solution of AlMe₃ in toluene (0.1 mL, 0.2 mmol, 5 equiv) was added to a solution of *n*-butylamine (20 μ L, 0.20 mmol, 5.0 equiv) in dichloromethane (1 mL), and the mixture was stirred at room temperature for 5 min. The resulting solution was transferred to a solution of lactone 37 (25 mg, 40 μ mol, 1.0 equiv) in dichloromethane (1 mL), and the solution was stirred at room temperature overnight and then quenched with a saturated solution of ammonium chloride (10 mL). The organic phase was separated, and the aqueous phase was extracted with dichloromethane $(3 \times 10 \text{ mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (silica gel, 1:4 ethyl acetate/hexanes) to yield amide 42 (25 mg, 87%) as a colorless oil: R_f = (0.31, 2:3 ethyl acetate/hexanes); $[\alpha]_{D}^{20}$ + 11 (c 1.0, CHCl₃); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.07 \text{ (d, } J = 2.0 \text{ Hz}, 1\text{H}), 6.86 \text{ (dd, } J = 8.3, 2.0 \text{ Hz},$ 1H), 6.79 (d, J = 8.3 Hz, 1H), 5.94 (t, J = 5.7 Hz, 1H), 4.55 (d, J = 9.2 Hz, 1H), 4.44 (q, J = 10.8 Hz, 2H), 4.16–4.07 (m, 2H), 4.00–3.93 (m, 1H), 3.83 (s, 3H), 3.65-3.57 (m, 3H), 3.37 (s, 3H), 3.34-3.24 (m, 1H), 3.23-3.13 (m, 1H), 2.34-2.25 (m, 1H), 2.17-2.07 (m, 3H), 2.00-1.83 (m, 4H), 1.75-1.67 (m, 1H), 1.60 (ddd, J = 13.5, 10.4, 2.8 Hz, 1H),1.51-1.44 (m, 2H), 1.38-1.28 (m, 3H), 0.97-0.86 (m, 12H), 0.83 (d, J = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 175.4, 149.2, 148.7, 134.2, 120.1, 112.6, 111.6, 93.9, 77.6, 71.4, 69.9, 69.7, 67.7, 66.2, 58.8, 56.1, 53.4, 51.5, 39.3, 35.1, 32.0, 30.6, 30.4, 29.6, 28.7, 22.1, 21.3, 20.6, 20.3, 18.5, 13.9; IR (NaCl) 3330, 3012, 2960, 2931, 2874, 1634, 1516, 1464, 1373, 1261, 1183, 1000 cm⁻¹; HRMS (ESI-TOF) m/z calcd for $C_{31}H_{52}Cl_3N_2O_8S$ [M + H]⁺ 717.2505, found [M + H]⁺ 717.2524 and calcd for $C_{31}H_{51}Cl_3N_2NaO_8S$ [M + Na]⁺ 739.2324, found [M + Na]⁺ 739.2341.

(S)-2-Isopropyl-N-methoxy-N-methylpent-4-enamide (47). EDC (0.71 g, 3.7 mmol, 1.1 equiv) was added to a solution of acid 7 (0.50 g, 3.5 mmol, 1 equiv) in dichloromethane (15 mL) at 0 °C, followed by triethylamine (0.59 mL, 4.2 mmol, 1.2 equiv), N,Odimethylhydroxylamine hydrochloride, and a small chip of DMAP. The reaction mixture was allowed to slowly reach room temperature and stirred for 16 h. Volatiles were removed under vacuum with a rotary evaporator, and the resulting residue was partitioned between ethyl acetate (10 mL) and H₂O (10 mL). The aqueous layer was backextracted twice with ethyl acetate $(2 \times 10 \text{ mL})$, and the organic layers were combined, washed with a saturated aqueous solution of sodium bicarbonate $(3 \times 10 \text{ mL})$, dried over sodium sulfate, and concentrated. The residue was purified by flash chromatography (silica gel, 2.5 cm diameter \times 20 cm height, 1:4 ethyl acetate/hexanes) to yield 47 (0.46 g, 70%) as an oil: $R_f = 0.7$ (3:7, ethyl acetate/hexanes) $[\alpha]_D^{20} + 8$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.74 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H), 5.05 (ddt, J = 17.0, 1.8, 1.2 Hz, 1H), 5.00-4.90 (m, 1H), 3.66 (s, 3H), 3.18 (s, 3H), 2.69 (br s, 1H), 2.43-2.23 (m, 2H), 1.96-1.82 (m, 1H), 0.96 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H); (residual chloroform signal was set at 77.9 ppm); 13 C NMR (75 MHz, CDCl₃) δ 177.6, 137.3, 117.0, 62.1, 48.2, 35.1, 32.8, 31.4, 21.9, 21.8; IR (neat) 3077, 2961, 2873, 2820, 1661, 1464, 1440, 1416, 1385, 1337, 1321, 1177, 1116, 1085; HRMS (ESI-TOF) m/z calcd for C₁₀H₂₀NO₂ $[M + H]^+$ 186.1489, found $[M + H]^+$ 186.1482.

(S)-2-Isopropyl-1-(4-methoxyphenyl)pent-4-en-1-one (48).²⁷ A solution of 1.6 M *n*-BuLi in hexane (1.35 mL, 2.16 mmol, 1.03 equiv) was added to a solution of 4-bromoanisole (0.26 mL, 2.1 mmol, 1.0 equiv) in tetrahydrofuran (8 mL) at -78 °C. The solution was stirred at -78 °C for 40-60 min, and then a solution of 47 (0.46 g, 2.5 mmol, 1.2 equiv) in tetrahydrofuran (2-3 mL) was added in a dropwise manner. The reaction mixture was allowed to warm to room temperature, stirred for 1 h, and then quenched with water (10 mL). The organic layer was separated from the aqueous layer. The aqueous layer was extracted with diethyl ether $(2 \times 10 \text{ mL})$. Organic solutions were combined, washed with brine $(2 \times 10 \text{ mL})$, dried over magnesium sulfate, filtered, and concentrated. The residue was purified by flash chromatography (silica gel, 2.5 cm diameter × 13 cm height; 1:9 diethyl ether/hexanes) to yield ketone 48 (0.40 g, 83%) as a clear oil: $R_f = 0.47$ (1:4 ethyl acetate/ hexanes); $[\alpha]_{D}^{20} + 38$ (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 5.69 (ddt, *J* = 17.0, 10.1, 7.0 Hz, 1H), 4.99 (d, J = 17.0 Hz, 1H), 4.89 (d, J = 10.1 Hz, 1H), 3.87 (s, 3H), 3.29 (ddd, J = 10.2, 6.8, 3.9 Hz, 1H), 2.64–2.45 (m, 1H), 2.38– 2.21 (m, 1H), 2.16–1.91 (m, J = 6.7 Hz, 1H), 0.98–0.88 (m, 6H);¹³C NMR (75 MHz, CDCl₃) δ 202.4, 163.4, 136.6, 131.5, 130.6 (2C), 116.3, 113.8 (2C), 55.6, 52.0, 33.4, 30.8, 21.4, 19.7; IR (neat) 3076, 2960, 2934, 2872, 2840, 1670, 1640, 1599, 1576, 1509, 1463, 1439, 1419, 1388, 1370, 1308, 1259, 1211, 1170, 1114, 1031 cm⁻¹; HRMS (ESI-TOF) *m/z* calcd for $C_{15}H_{21}O_2 [M + H]^+ 233.1536$, found $[M + H]^+ 233.1530$ and calcd for $C_{15}H_{20}NaO_2 [M + Na]^+ 255.1356$, found $[M + Na]^+ 255.1345$.

Dilactone 49. Hoveyda–Grubbs' second-generation catalyst (6 mg, 0.01 mmol, 0.05 equiv) was added to a solution of ester 16 (70 mg, 0.20, 1.0 equiv) in toluene (20 mL), and the mixture was heated to reflux for 24 h. The solution was concentrated by blowing air in the flask. The residue was purified by flash chromatography (silica gel, 2.0 cm diameter × 20 cm height, 0:100 to 3:97 ethyl acetate/hexanes) to yield the dilactone **49** (20 mg, 30%): $R_f = 0.2$ (1:9 ethyl acetate/hexanes); recrystallization from methanol gave white crystals; mp 191–198 °C; $[\alpha]_{\rm D}^{2\ell}$ $-48 (c 0.5, CHCl_3); {}^{1}H NMR (300 MHz, CDCl_3) \delta 7.22 - 7.13 (m, 4H),$ 6.91–6.78 (m, 4H), 6.14 (d, J = 2.7 Hz, 2H), 5.75–5.60 (m, 2H), 5.54– 5.35 (m, 2H), 3.80 (s, 6H), 2.54–2.27 (m, 4H), 2.21 (ddd, J = 11.2, 7.9, 3.6 Hz, 2H), 2.14-1.94 (m, 4H), 1.94-1.70 (m, 4H), 1.52-1.42 (m, 2H), 0.98 (d, J = 6.7 Hz, 6H), 0.94 (d, J = 6.9 Hz, 6H), 0.90 (d, J = 6.6 Hz, 6H), 0.78 (d, J = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 174.8, 158.6, 132.8, 131.4, 130.0, 127.3, 113.5, 75.3, 55.4, 54.4, 50.1, 34.5, 31.5, 28.2, 25.7, 23.3, 21.2, 20.6, 18.0; IR (neat) 2956, 2932, 2873,

1733, 1513, 1465, 1248, 1148, 1035 cm⁻¹; HRMS (ESI-TOF) m/z calcd for C₄₂H₆₄NO₆ [M + NH₄]⁺ 678.4728, found [M + NH₄]⁺ 678.4721.

Other fractions were combined to give 28 mg of mixture of head-tohead isomers 50.

(2S,7R,E)-2-Isopropyl-7-(4-methoxybenzyl)-8-methylnon-4enoic Acid (Acid 51). TFA (3 drops) was added to a solution of dilactone 49 (17 mg, 0.026 mmol, 1.0 equiv) and triethylsilane (0.10 mL, 0.63 mmol, 24 equiv) in dichloromethane (1 mL). The solution was stirred at room temperature for 10 min. Volatiles were removed under vacuum with a rotary evaporator, and the residue was purified by flash chromatography (silica gel, 1.5 cm diameter × 20 cm height, 100 mL of hexanes then 1:19 ethyl acetate/hexanes) to yield acid 51 (12 mg, 71%) as a clear oil: $R_f = 0.14$ (1:9 ethyl acetate/hexanes); $[\alpha]_D^{20} + 27$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 10.74 (s, 1H), 7.07–7.02 (m, 2H), 6.83-6.78 (m, 2H), 5.47-5.29 (m, 2H), 3.78 (s, 3H), 2.50 (dd, J = 13.8, 6.6 Hz, 1H), 2.36 (dd, J = 13.8, 8.0 Hz, 1H), 2.31–2.12 (m, 3H), 2.00–1.80 (m, 3H), 1.76–1.62 (m, 1H), 1.53–1.40 (m, 1H), 1.00-0.92 (m, 6H), 0.88 (d, J = 6.9 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H);¹³C NMR (75 MHz, CDCl₃) δ 180.6, 157.7, 134.2, 132.0, 130.1, 128.3, 113.7, 55.4, 52.7, 46.4, 35.7, 33.0, 32.7, 30.1, 28.3, 20.4, 20.3, 19.3, 19.0; IR (neat) 2956, 2925, 2871, 1703, 1511, 1244, 1176, 1038 cm⁻¹; HRMS (ESI-TOF) m/z calcd for $C_{21}H_{36}NO_3$ [M + NH₄]⁺ 350.2690, found $[M + NH_4]^+$ 350.2688 and calcd for $C_{21}H_{32}NaO_3 [M + Na]^+$ 355.2244, found [M + Na]⁺ 355.2248.

Dilactone 52. Pd/C (cat) was added to a solution of the mixture of isomers 50 (28 mg) in methanol/ethyl acetate (6 mL, 1:1). The suspension was purged with H₂ and stirred 24 h. The mixture was then filtered on Celite and concentrated to afford a residue which was purified by flash chromatography (silica gel, 1.5 cm diameter \times 20 cm height, 1:9 ethyl acetate/hexanes) to yield dilactone 52 (20 mg, 30% over two steps) as a clear oil: $R_f = 0.33$ (1:9 ethyl acetate/hexanes); $[\alpha]_D^{20} - 64$ $(c \ 0.5, \ CHCl_2); \ ^1H \ NMR \ (300 \ MHz, \ CDCl_2) \ \delta \ 7.19-7.11 \ (m, \ 4H),$ 6.90–6.83 (m, 4H), 6.05 (d, J = 1.5 Hz, 2H), 3.79 (s, 6H), 2.22 (td, J = 8.7, 2.8 Hz, 2H), 2.00–1.82 (m, 2H), 1.82–1.27 (m, 20H), 0.96–0.84 (m, 18H), 0.81 (d, J = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 158.7, 132.4, 127.5, 113.6, 76.2, 55.3, 52.7, 50.3, 30.3, 29.7, 29.5, 27.0, 26.9, 25.8, 23.0, 21.5, 20.0, 18.6; IR (neat) 2953, 2934, 2868, 1730, 1608, 1507, 1461, 1379, 1295, 1250, 1172, 1118, 1035 cm⁻¹; HRMS (ESI-TOF) m/z calcd for $C_{42}H_{64}NaO_6$ [M + Na]⁺ 687.4595, found $[M + Na]^+$ 687.4580.

(25,7*R*)-2-Isopropyl-7-(4-methoxybenzyl)-8-methylnonanoic Acid (Acid 54). Pd/C (cat) was added to a solution of dilactone 49 (4 mg, 0.006 mmol, 1 equiv) in methanol (0.5 mL) and ethyl acetate (0.05 mL). The suspension was purged with H₂, and the reaction was stirred under H₂ atmosphere (H₂ balloon). The reaction was monitored by TLC: $R_f = 0.31$ (1:9 ethyl acetate/hexanes). When completed, the mixture was filtered through Celite and concentrated to afford 4 mg of the crude dilactone 53: ¹H NMR (300 MHz, CDCl₃) δ 7.18–7.09 (m, 2H), 6.88–6.75 (m, 2H), 6.14 (d, *J* = 1.8 Hz, 1H), 3.77 (s, 3H), 2.15–2.03 (m, 1H), 1.91–1.10 (m, 11H), 0.92 (d, *J* = 6.7 Hz, 6H), 0.83 (d, *J* = 6.6 Hz, 3H), 0.74 (d, *J* = 7.0 Hz, 3H); HRMS (ESI-TOF) *m*/*z* calcd for C₄₂H₆₄NaO₆ [M + Na]⁺ 687.4595, found [M + Na]⁺ 687.4576.

TFA (3 drops) was added to a solution of the crude dilactone 53 (4 mg, 0.006 mmol, 1 equiv) and triethylsilane (0.1 mL, 0.63 mmol, 100 equiv) in dichloromethane (1 mL). The solution was stirred at room temperature for 10 min. Volatiles were removed under vacuum with a rotary evaporator, and the residue was purified by flash chromatography (silica gel, 1.5 cm diameter \times 20 cm height, 100 mL of hexanes then 1:19 ethyl acetate:hexanes) to yield acid 54 (3 mg, 75%): $[\alpha]_{\rm D}^{20}$ +16 (*c* 0.3, CDCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.45 (s, 1H), 7.10–7.02 (m, 2H), 6.84–6.76 (m, 2H), 3.78 (s, 3H), 2.51 (dd, J = 13.7, 6.7 Hz, 1H), 2.35 (dd, J = 13.7, 7.8 Hz, 1H), 2.17–2.03 (m, 1H), 1.94–1.79 (m, 1H), 1.75–1.62 (m, 1H), 1.62–1.49 (m, 2H), 1.49–1.36 (m, 2H), 1.36-1.08 (m, 5H), 0.96-0.92 (m, 6H), 0.88 (d, J = 6.9 Hz, 3H), 0.84 $(d, J = 6.9 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (175 \text{ MHz}, \text{CDCl}_3) \delta 179.6, 157.7, 134.5,$ 130.1, 113.7, 55.4, 52.4, 46.1, 36.3, 30.6, 29.6, 29.5, 28.6, 28.4, 27.7, 20.6, 20.3, 19.3, 16.9; $^{13}\mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_3)$ δ 181.5, 157.7, 134.4, 130.1, 113.7, 55.4, 52.6, 46.1, 36.3, 30.6, 29.5, 29.4, 28.6, 28.2, 27.7, 20.6, 20.2, 19.3, 18.8; IR (neat) 2925, 2860, 1704, 1511, 1461, 1375, 1245,

1178, 1038 cm⁻¹; HRMS (ESI_NEG) calcd for $C_{21}H_{33}O_3$ [M – H]⁻ 333.2435, found [M-H]⁻ 333.2440.

Lactone 55. 2,2,2-Trichloroethylsulfamate (14 mg, 0.061 mmol, 1.1 equiv) was added to a solution of lactone 20 (18 mg, 0.055 mmol, 1.0 equiv) in toluene (0.3 mL) followed by magnesium oxide (6 mg, 0.15 mmol, 2.7 equiv) and rhodium trifluoroacetamide dimer (2 mg, 0.003 mmol, 0.04 equiv). The resulting pale blue slurry was cooled to 0 °C, diacetoxyiodobenzene (27 mg 0.083 mmol, 1.5 equiv) was added, and the reaction was slowly warmed to room temperature. The progress of the reaction was monitored by TLC analysis (30:70 ethyl acetatehexanes, CAM). After 20 h of stirring at room temperature, TLC analysis showed no more conversion. The reaction mixture was diluted with dichloromethane, filtered through a pad of Celite, and then washed with dichloromethane (3 \times 10 mL). The solvent was removed under reduced pressure to leave a brown oil which was purified by flash column chromatography (silica gel, 1.5 cm diameter ×20.0 cm height, 1:19 ethyl acetate/hexanes) to yield compound 55 (8 mg, 0.014 mmol; 25%) and starting material 20 (8 mg, 0.024 mmol, yield based on recovered starting material: 47%): $R_f = 0.27$ (1:9 ethyl acetate/hexanes); $[\alpha]_D^{20} - 19$ $(c 0.8, CDCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.7 Hz, 1H), 6.89 (d, J = 8.7 Hz, 1H), 5.85 (d, J = 6.3 Hz, 1H), 4.80 (s, 1H), 3.81(s, 1H), 2.94 (ddd, J = 12.2, 6.8, 2.6 Hz, 1H), 2.81 (ddd, J = 10.1, 6.8, 3.0 Hz, 1H), 2.48-2.39 (m, 1H), 2.32-2.25 (m, 1H), 2.21-1.99 (m, 1H), 1.97-1.87 (m, J = 14.6, 11.3, 6.2 Hz, 1H), 1.51-1.41 (m, 1H), 1.03 (t, J = 6.8 Hz, 3H), 0.88 (d, J = 6.6 Hz, 2H), 0.77 (d, J = 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 159.8, 129.2, 128.9, 114.1, 93.1, 79.5, 77.1, 55.4, 49.1, 48.1, 44.1, 43.6, 29.6, 26.9, 26.0, 23.4, 22.6, 21.7, 20.2, 19.7; IR (neat) 2959, 2931, 2873, 2839, 1733, 1612, 1515, 1464, 1369, 1250, 1178, 1118 cm⁻¹; HRMS (ESI-TOF) m/z calcd for $C_{23}H_{33}NO_6SCl_3$ [M + H]⁺ 556.1089, found [M + H]⁺ 556.1075.

ASSOCIATED CONTENT

S Supporting Information

¹H and ¹³C NMR spectra of new compounds as well as X-ray crystallography reports and CIF files for compounds **20**, **25**, **32**, **33**, **39**, and **49**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: stephen.hanessian@umontreal.ca.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for financial support from NSERC and FQRNT. We thank Robert D. Giacometti and Benoît Deschênes-Simard for X-ray crystallographic analyses.

REFERENCES

(1) (a) Braunwald's Heart Disease: Review and Assessment; Lilly, L. S., Ed.; Elsevier Health Sciences: New York, 2012. (b) Pathophysiology of Heart Disease; Lilly, L. S., Ed.; Lippincott Williams & Wilkins: New York, 2011. (c) Chilton, R. J. J. Am. Osteopath. Assoc. 2004, 104 (9), S5.

(2) Tigerstedt, R.; Bergman, P. G. Skand. Arch. Physiol. 1898, 8, 223.
(3) White, W. B. Am. J. Med. 2005, 118, 695.

(4) (a) Skeggs, L. T.; Doven, F. E.; Levins, M.; Lentz, K.; Kahn, J. R. In The Renin-Agiotensin System; Johnson, J. A., Anderson, R. R., Eds.; Plenum Press: New York, 1980; p 1. (b) McGregor, G. A.; Markandu, N. D.; Roulston, J. E.; Jones, J. C.; Morton, J. J. Nature 1981, 291, 329. (c) Reid, I. A.; Morris, B. J.; Ganong, W. F. Annu. Rev. Physiol. 1978, 40, 377.

(5) Foundling, S. I.; Cooper, J.; Watson, F. E.; Cleasby, A.; Pearl, L. H.; Sibanda, B. L.; Hemmings, A.; Wood, S. P.; Blundell, T. L.; Valler, M. J.; Norey, C. G.; Kay, J.; Boger, J.; Dunn, B. M.; Leckie, B. J.; Jones, D. M.; Atrash, B.; Hallett, A.; Szelke, M. *Nature* **1987**, *327*, 349. (6) (a) Kobori, H.; Nangaku, M.; Navar, L. G.; Nishiyama, A. *Pharmacol. Rev.* **2007**, *59*, 251. (b) Wood, J. M.; Stanton, J. L.; Hofbauer, K. G. *J. Enzym. Inhib.* **1981**, *1*, 169. (c) For a historical perspective, see: Peart, W. S. *Proc. R. Soc., B* **1969**, *173*, 317. (d) Skeggs, L. T., Jr.; Kahn, J. R.; Lentz, K.; Shumway, N. P. J. Exp. Med. **1957**, *106*, 439.

(7) See, for examples: (a) Kasani, A.; Subedi, R.; Stier, M.; Holsworth, D. D.; Maiti, S. N. *Heterocycles* **2007**, *73*, 47. (b) Tice, C. M. *Annu. Rep. Med. Chem.* **2006**, *41*, 155. (c) Rosenberg, S. H.; Kleinert, H. D. *Pharm. Biotechnol.* **1998**, *11*, 7. (d) Rosenberg, S. H. *Prog. Med. Chem.* **1995**, *32*, 37. (e) Greenlee, W. J. *Med. Res. Rev.* **1990**, *2*, 173.

(8) (a) Sielecki, A. R.; Hayakawa, K.; Fujinaga, M.; Murphy, M. E. P.; Fraser, M.; Muir, A. K.; Carilli, C. T.; Lewicki, J. A.; Baxter, J. D.; James, M. N. G. *Science* **1989**, *243*, 1346. (b) Dhanaraj, V.; Dealwis, C. G.; Frazao, C.; Badasso, M.; Sibanda, B. L.; Tickle, I. J.; Cooper, J. B.; Driessen, H. P.; Newman, M.; Aguilar, C.; Wood, S. P.; Blundell, T. L.; Hobart, P. M.; Geoghegan, K. F.; Ammirati, M. J.; Danley, D. E.; O'Connor, B. A.; Hoover, D. J. *Nature* **1992**, *357*, 466.

(9) For reviews, see: (a) Maibaum, J.; Feldman, D. L. Annu. Rep. Med. Chem. 2009, 44, 105. (b) Jensen, C.; Herold, P.; Brunner, H. R. Nat. Rev. Drug Discovery 2008, 7, 399. (c) Siragy, H. M.; Kar, S.; Kirkpatrick, P. Nat. Rev. Drug Discovery 2007, 6, 779.

(10) (a) Webb, R. L.; Schiering, N.; Sedrani, R.; Maibaum, J. J. Med. Chem. **2010**, 53, 7490. (b) Rahuel, J.; Rasetti, V.; Maibaum, J.; Rueger, H.; Goschke, R.; Cohen, N. C.; Stutz, S.; Cumin, F.; Fuhrer, W.; Wood, J. M.; Gruetter, M. G. Chem. Biol. **2000**, 7, 493.

(11) (a) Wood, J. M.; Maibaum, J.; Rahuel, J.; Grütter, M. G.; Cohen, N.-C.; Rasetti, V.; Rüger, H.; Göschke, R.; Stutz, S.; Fuhrer, W.; Schilling, W.; Rigollier, P.; Yamaguchi, Y.; Cumin, F.; Baum, H.-P.; Schnell, C. R.; Herold, P.; Mah, R.; Jensen, C.; O'Brien, E.; Stanton, A.; Bedigian, M. P. *Biochem. Biophys. Res. Commun.* **2003**, *308*, 698. (b) Rahuel, J.; Priestle, J. P.; Gruetter, M. G. J. Struct. Biol. **1991**, *107*, 227.

(12) Maibaum, J.; Stutz, S.; Göschke, R.; Rigollier, P.; Yamaguchi, Y.; Cumin, F.; Rahuel, J.; Baum, H.-P.; Cohen, N.-C.; Schnell, C. R.; Fuhrer, W.; Gruetter, M. G.; Schilling, W.; Wood, J. M. *J. Med. Chem.* **200**7, *50*, 4832.

(13) See, for example: (a) Morganti, A.; Lonati, C. J. Nephrol. 2011, 24, 541. (b) Wal, P.; Wal, A.; Rai, A. K.; Dixit, A. J. Pharm. Bioallied Sci. 2011, 3, 189. (c) Mohamed Saleem, T. S.; Jain, A.; Tarani, P.; Ravi, V.; Gauthaman, K. Syst. Rev. Pharm. 2010, 1, 93. (d) Price, L. Drugs Context 2008, 4, 105. (e) Allikmetz, K. Vasc. Health Risk Manag. 2007, 3, 809. (f) Fisher, N. D.; Hollenberg, N. K. Exp. Opin. Investig. Drugs 2001, 10, 417.

(14) See, for example: Hanessian, S. Chem. Med. Chem. 2006, 1, 1300.

(15) Hanessian, S.; Raghavan, S. *Bioorg. Med. Chem. Lett.* 1994, 4, 1697.
(16) (a) Hanessian, S.; Claridge, S.; Johnstone, S. *J. Org. Chem.* 2002, 67, 4261. (b) For related approaches, see: Acemoglu, M.; Grimler, D.; Sedelmeier, G. WO 045420 A3, 2007.

(17) For a summary, see: Yokokawa, F.; Maibaum, J. *Expert Opin. Ther. Patents* **2008**, *18*, 581 and references cited therein.

(18) See, for example: (a) Göschke, R.; Stutz, S.; Heinzelmann, W.; Maibaum, J. Helv. Chim. Acta 2003, 86, 2848. (b) Dondoni, A.; De Lathauwer, G.; Perrone, D. Tetrahedron Lett. 2001, 42, 4819.
(c) Sandham, D. A.; Taylor, R. J.; Carey, J. S.; Fässler, A. Tetrahedron Lett. 2000, 41, 10091. (d) Rüeger, H.; Stutz, S.; Göschke, R.; Spindler, F.; Maibaum, J. Tetrahedron Lett. 2000, 41, 10085.

(19) (a) Neelam, U. K.; Gangula, S.; Reddy, V. P.; Bandichhor, R. *Chem. Biol. Interface* **2013**, *3*, 14. (b) Lindsay, K. B.; Skrydstrup, T. J. Org. *Chem.* **2006**, *71*, 4766.

(20) (a) Mascia, S.; Heider, P. L.; Zhang, H.; Lakerveld, R.; Benyahia, B.; Barton, P. I.; Braatz, R. D.; Cooney, C. L.; Evans, J. M.; Jamison, T. F.; Jensen, K. F.; Myerson, A. S.; Trout, B. L. *Angew. Chem., Int. Ed.* 2013, 52, 12359. (b) Nam, G.; Ko, S. Y. *Helv. Chim. Acta* 2012, 95, 1937. (c) Slade, J.; Liu, H.; Prashad, M.; Prasad, K. *Tetrahedron Lett.* 2011, 52, 4349. (d) Dong, H.; Zhang, Z.-L.; Huang, J.-H.; Ma, R.; Chen, S.-H.; Li, G. *Tetrahedron Lett.* 2005, 46, 6337.

(21) Cee, V. J. In *Modern Drug Synthesis*; Li, J. J., Johnson, D. S., Eds.; J. Wiley & Sons: Hoboken, NJ, 2010; Chapter 11.

(22) (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737. (b) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127. (c) Evans, D. A.; Takacs, J. M. Tetrahedron Lett. 1980, 21, 4233.

(23) (a) Sckhöllkopf, U.; Westphalen, K.-O.; Schröder, J.; Horn, K. *Liebigs Ann. Chem.* **1988**, 781. (b) Schöllkopf, U. *Pure Appl. Chem.* **1983**, 55, 1799.

(24) See, for example: (a) Milan, S. US Patent 0296100A1, 2012. (b) Satyanarayna Reddy, M.; Thirumalai Rajan, S.; Eswaraiah, S.; Venkat Reddy, G.; Rama Subba Reddy, K.; Sahadeva Reddy, M. WO 148392 A1, 2011. (c) Kidemet, D.; Zupet, R.; Smodis, J.; Stefane, B.; Pozgan, F. EP 2189442A1, 2010. (d) Meier, V.; Reuter, K.; Stolz, F.; Wedel, T. WO 049837 A1, 2009.

(25) (a) Herold, P.; Stutz, S. EP 1303478B1, 2004. (b) Herold, P.;
Stutz, S. WO 0202487 A1, 2002. (c) Herold, P.; Stutz, S. WO 02092828
A3, 2002. (d) Herold, P.; Stutz, S.; Spindler, F. WO 0202508 A1, 2002.
(e) See also: Boogers, J. A. F.; Felfer, U.; Kotthaus, M.; Lefort, L.;
Steinbauer, G.; de Vries, A. H. M.; de Vries, J. G. Org. Process Res. Dev.
2007, 11, 585. (f) Sturm, T.; Weissensteiner, W.; Spindler, F. Adv. Synth.
Catal. 2003, 345, 160.

(26) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044.
 (27) Hanessian, S.; Chénard, E. Org. Lett. 2012, 14, 3222.

(28) Hanessian, S.; Guesné, S.; Chénard, E. Org. Lett. 2010, 12, 1816.

(29) For a relevant review, see: (a) Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, 2003; Vols. 1–3. (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. **1996**, 118, 100.

(30) (a) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42,

4592. (b) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900. (c) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.

(31) See the Supporting Information

(32) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2001, 66, 4333.

(33) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. **1979**, *52*, 1989.

(34) For examples of the use of Ti(O-*i*-Pr)₄ in metathesis reactions, see: (a) Baba, Y.; Saha, G.; Nakao, S.; Iwata, C.; Tanaka, T.; Ibuka, T.; Ohishi, H.; Takemoto, Y. J. Org. Chem. **2001**, *66*, 81. (b) Fürstner, A.; Langemann, K. J. Am. Chem. Soc. **1997**, *119*, 9130.

(35) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J., Jr.; Hoveyda, A. H. J. Am. Chem. Soc. **1999**, *121*, 791.

(36) For example, see: (a) Shiina, I. Chem. Rev. 2007, 107, 239.
(b) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.

(37) For recent studies on the influence of substituent in ring-closing metathesis to form 9-membered lactone, see: (a) Ramírez-Fernández, J.; Collado, I. G.; Hernández-Galán, R. Synlett **2008**, 339. (b) Takahashi, T.; Wataqnabe, H.; Kitahara, T. *Heterocycles* **2002**, 58, 99. (c) Baba, Y.; Saha, G.; Nakao, S.; Iwata, C.; Tanaka, T.; Ibuka, T.; Ohishi, H.; Takemoto, Y. J. Org. Chem. **2001**, 66, 81.

(38) Thakur, V. V.; Talluri, S. K.; Sudalai, A. Org. Lett. 2003, 5, 861.

(39) Guthikonda, K.; Du Bois, J. J. Am. Chem. Soc. 2002, 124, 13672.

(40) Ramarao, C.; Michel, P. T.; Navakoti, R.; Nandipati, R. D.; Rao, R.; WO 064790 A1, 2011.

(41) Openshaw, H. T.; Whittaker, N. J. Chem. Soc. C 1969, 89.

(42) Mickel, S. J.; Sedelmeier, G.; Hirt, H.; Schäfer, F.; Foulkes, M. WO 131304, 2006.

(43) Foley, M. A.; Jamison, T. F. Org. Process Res. Dev. 2010, 14, 1177. (44) (a) Arena, G.; Barreca, G.; Carcone, L.; Cini, E.; Marras, G.; Nedden, H. G.; Rasparini, M.; Roseblade, S.; Russo, A.; Taddei, M.; Zanotti-Geraso, A. Adv. Synth. Catal. 2013, 355, 1449. (b) Taddei, M.; Russo, A.; Cini, E.; Riva, R.; Rasparini, M.; Carcone, L.; Banfi, L.; Vitale, R.; Roseblade, S.; Zanotti-Gerosa, A. WO 151442 A2, 2011.

(45) For reviews, see: (a) Mohr, J. T.; Krout, M. R.; Stoltz, B. M. Nature 2008, 455, 323. (b) Mohr, J. T.; Stoltz, B. M. Chem.—Asian J. 2007, 2, 1476. (c) You, S.-L.; Dai, L.-X. Angew. Chem., Int. Ed. 2006, 45, 5246. For the design, synthesis, and reactivity of chiral phosphinooxazolines (PHOX) ligands, see: (d) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336 and references cited therein. (e) Williams, J. M. J. Synlett 1996, 705. (46) Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D. W. C. *Science* **2007**, *316*, 582.

(47) (a) Thiel, O. R.; Ackermann, L.; Fürstner, A. Org. Lett. 2001, 3, 449. (b) Kozmin, Sergey A.; Adams, C. M.; Paone, D. V.; Smith, A. B., III. J. Am. Chem. Soc. 2000, 122, 4984.